Generic Heuristics for Combinatorial Optimization Problems

نویسندگان

  • Michael Affenzeller
  • Rene Mayrhofer
چکیده

This paper discusses the use of several heuristic techniques for problems of combinatorial optimization. We especially consider the advantages and disadvantages of naturally inspired generic techniques like Simulated Annealing, Evolution Strategies, or Genetic Algorithms. This reflection gives a quite intuitive motivation for hybrid approaches that aim to combine advantageous aspects of the certain strategies. Among those we formulate our new hybrid multidisciplinary ideas that are mainly based upon Genetic Algorithms and Evolution Strategies. These algorithms aim to improve the global solution quality by retarding the effects of unwanted premature convergence. The experimental part of the paper gives a brief overview of achieved results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

OptLets: A Generic Framework for Solving Arbitrary Optimization Problems

Meta-heuristics are an effective paradigm for solving large-scale combinatorial optimization problems. However, the development of such algorithms is often very time-consuming as they have to be designed for a concrete problem class with little or no opportunity for reuse. In this paper, we present a generic software framework that is able to handle different types of combinatorial optimization...

متن کامل

An optimization technique for vendor selection with quantity discounts using Genetic Algorithm

Vendor selection decisions are complicated by the fact that various conflicting multi-objective factors must be considered in the decision making process. The problem of vendor selection becomes still more compli-cated with the inclusion of incremental discount pricing schedule. Such hard combinatorial problems when solved using meta heuristics produce near optimal solutions. This paper propose...

متن کامل

Simulated annealing: a fast heuristic for some generic layout problems

There are two major criticisms about simulated annealing as a general method for solving combinatorial optimization problems: its effectiveness when compared with other welldesigned heuristics and its excessive computation time. In this paper, we show that simulated annealing, with properly des~gned annealing schedule and move generation strategy, achieves significant speerlups for high quality...

متن کامل

An Improved Time-Sensitive Metaheuristic Framework for Combinatorial Optimization

We introduce a metaheuristic framework for combinatorial optimization. Our framework is similar to others (e.g. [1]) in that it is modular enough that important components can be independently developed. Ours is different in several aspects. It supports several built-in components such as combinatorial representations and search heuristics to facilitate the creation of a new optimizer for a wid...

متن کامل

Mathematical Programming Models for Solving Unequal-Sized Facilities Layout Problems - a Generic Search Method

 This paper present unequal-sized facilities layout solutions generated by a genetic search program named LADEGA (Layout Design using a Genetic Algorithm). The generalized quadratic assignment problem requiring pre-determined distance and material flow matrices as the input data and the continuous plane model employing a dynamic distance measure and a material flow matrix are discussed. Computa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003